Introduction to Document Management

Documation '97 February 25, 1997 Santa Clara, California

Kurt Conrad conrad@sagebrushgroup.com

Goal of Tutorial

To help you to understand the fundamental changes which are occurring in the field of document management and their relationships to process and technology alternatives.

Fundamental Changes

P Just now learning to use computers to improve organizational performance.

P Destabilizing the nature of work

< Organizational purpose
 < How individuals contribute value

P Document management "in the cross-hairs"

- < Concept of the document
- < Measures of value

Hidden Importance

P80-90% of corporate information in documents

P Documents claim

- < 40-60% of office worker's time
- < 20-45% of labor costs
- < 12-15% of corporate revenues

P Emerging metaphor for organizing complex information

Documents as Strategic Assets

P Contain information critical to complex organizational behaviors

- < Provide context
- < Integrate, document, and communicate understanding
- PCritical to customer satisfaction
- PInconsistently recognized as strategic
 - < Real men do databases
 - < CALS, ATA 2000, ISO 9000, etc.

What the Tutorial Will Cover

- P What is Document Management
- P The History of Document Management
- P Document Management Architectures
- P Implementation Issues
- P Workflow Automation
- PIntegration Points
- P Impact of the World Wide Web

What is Document Management?

Simple Definition

Systems for managing collections of documents

Wide disparity of approaches

- P Document Image Management
- PFull Text Retrieval
- P Compound Document Management
- **P**Online Viewing
- **P**Workflow
- PObject-Oriented Databases

What is Management?

Actions taken today to protect the future

Protecting the Future

P Do all your documents (or the information in them) have the same future?

< "One size fits all" solutions are a common mistake

P How much will the future cost?

< Cost = (Legacy, Vision)

P Future value is defined in terms of human and automated behaviors

Metadata Determines Future Value

- P Metadata = data about data
- P Metadata is the basis for behavior
- P Humans can create metadata and resolve ambiguous metadata
- P Computers can't
- P Documents are often rich in ambiguous metadata
- P Are your documents "smart enough" to meet future needs?

What is Document Management?

- P Document Management processes and technologies protect the future value of documents.
- P A wide variety of approaches have been developed which are based on different concepts of the document and emphasize different definitions of document value.

History of Document Management Systems

History Overview

- P Mirrors the evolution of the concept of the document
- P Conceptual changes closely tied to technology and metadata changes (chicken and egg)
- P Three primary concepts
 - < Paper documents
 - < Automated paper documents
 - < Electronic documents

Paper Documents

Focus on the dynamics of the physical artifact

P Metadata implied through visual clues

- < Linear sequence
- < Typography and formatting
- < TOC, lists, indexes, cross references, etc.
- P Human interpretation creates meaning
- P Efficient use of space often more important than retrievability and reuse
- PInnovations target the independent efficiency of production, storage, and retrieval

Automated Paper Documents

Speeds the processing of physical documents

P Paper hides a multitude of sins

PFocus on visual formatting

- < Laser printers allow more control
- < HW/SW tools function like fast, powerful pens
- < Metadata / operator interaction based on formatting codes

P Illusion of control

P Management of meaning and semantics limited to relational database world

Automated Paper Documents

Solutions often focus on a subset of the document lifecycle

Automated Paper Documents

Technologies

- P Paper-based interface standards
- PGraphics, Wordprocessing, and Desktop Publishing tools
- P Manage information *about* the documents
 - < File management systems
 - < Image management systems
 - < Other database-based indexing systems

Conceptual Shifts

PIncreased information density

P Documents are more than their paper representations

- < Time-based media
- < Hyperlinks and other navigational aides
- < Formal relationships to other sets of information

P Paper becomes a portable, high-resolution display technology

Conceptual Shifts

- P Processing-neutral encodings that support multiple representations for delivery
- P Emphasis on meaning and semantics
 - Richer, more descriptive metadata that serves as a basis for integrating the entire document lifecycle
- P Tied to new organizational models that are based on shared pools of information

Performance

P Time and quality become dominate values

- < Use and reuse of knowledge
- < Customer satisfaction

P Performance and value increasingly limited by production process

PIncreased importance of up-front design

- < Formalized structures and validation
- < Explicit metadata that supports complex human and automated behaviors
- < Software and data interfaces

Technologies

- PManage information *contained in* documents
- P Data encodings as interface standards
- P Structured authoring
- P Hypermedia authoring (including links, annotations, workflow, other relationships)
- P Component management systems
- P Convergence of competing concepts

What is Document Management?

Revisited

- P Today's high-performance documents are based on relationships
- P Emphasis is shifting away from
 - < Simple storage and retrieval
 - < Independent management of life cycle phases
- PNew emphasis on integrating interrelated information lifecycles
- P Systems often encompass competing concepts of the document

Overview of Document Management Architectures

Overview

P Three models

< Image-based

< WYSIWYG DTP

< Compound document management

PComponents

< Data encoding standards

- < Software interoperability standards
- < Task-specific tools

< Communications and repository infrastructure

Image-based Architectures

- P Dragging paper documents into the electronic age
- P Heavy reliance on human interpretation
- PLayering of metadata to capture meaning and understanding
- P Workflow automation and annotation innovations

WYSIWYG DTP

P Control of visual aspectsP File-based and BLOBS

PProduction focus

P Short-lived documents

- < Advertising
- < Novelty
- < Drama

PWWW

Compound Document Management

- P Control of individual information objects
- P Structure and semantics
- PLate binding of typography
- PCustomization of both form and content
- PAddressing and transformation issues
- P Encompasses and consolidates other architectures

General Questions

- PWho controls the standard?
- P What classes of metadata (conceptual models) does it support?
- P What behaviors does it support?
- P Portability, platform independence, ability to support required transforms

Text

P Paper P Image P Text P Page image P Traditional markup P Generalized markup

Graphics

P Paper
P Image
P Vector
P Semantically-rich vector graphics

Other

PAudio **P**Video **P**Voice **P**Positional **P**Hyperlinking **P**Rendering **P**Behaviors

Software Interoperability Standards

P Programming languages

PApplication Programming Interfaces

- < Single vendor
- < Vendor consortium

PExamples

< Shamrock, DEN, ODMA, OLE, OpenDoc, CORBA

PStability

Authoring

PTraditional

- < Word processing and DTP
- < Graphics

P Structured authoring

- < SGML/HTML
- < Forms
- < Graphics

PLayering

< Browsers

Editing

P Heavily reliant on human interpretation

P Syntax checkers and validators

- < Content (spelling, grammar)
- < Markup
- PBatch vs real-time

Formatting & Publishing

PConverters

- < Scanners
- < OCR/vectorizers
- < Programmable
- PComposition tools
- P Physical media and associated hardware
- P Hypermedia authoring tools
- P Print on demand

Delivery & Storage

P Dependent on published form

P Relational and object-oriented databases

- < Square pegs
- < Tables, hierarchies, and non-linear relationships
- < Performance
- < Data model designs
- < Granularity

PEmail, workflow, other network-based transport mechanisms

Retrieval

P Database queries

PFull text

- < Boolean searches
- < Weighted thesauruses
- < Vector searches
- < Context-sensitive searches
- < Natural language

PImage matching

Task-Based Tools

Viewing

- PText readers
- PNative file viewers
- PRaster viewers
- P Page viewers
- **P**Binary browsers
- P Fixed markup language browsers
- PArbitrary DTD browsers

Infrastructure

P Repository and communications subsystems

- **P**Scope
- **P**Granularity
- **P**Encodings
- P Versioning and configuration control
- P Target of most software interoperability standards

Implementation Issues

Human Issues

P Difficulty of adopting enabling technologies

- < Conceptualization
- < Learning
- < Foresight

PPerceptions

< Technology problem < Uniqueness

PWho knows?

Organizational Issues

PReengineering

- < Complex behavior based on richer semantics
- < Self-awareness

PInformation politics

- < Stakeholder interests
- < Policy development & governance
- < Allocation of decision making

P Competing interests of information owners and technology vendors

Technical Issues

- P Adequate communications infrastructure
- PCross-platform integration
- P Selecting standards
- P Legacy systems and data
- P Addressing and granularity
- P Planning for obsolescence
- P Labor costs

Workflow Automation

Issues

P Often confused with document management

- < Check-in and check-out
- < Component-level configuration control
- P Convergence with document management < Routing and communication
- PAd hoc vs engineered workflows

Opportunities

P Basic reengineering model

< Shift from linear flow to shared pools < "Linear" process flows still remain

P Documenting transformations provides additional context to information objects < Facilitates understanding

< Simplifies reuse in new contexts

PAdditional "publishing vectors"

Integration Points

Organizational Integration

P Information suppliers and consumers
P Metadata requirements
P Process, policy, politics
P Values

Data Integration

- P Encoding standards
- P Software interoperability standards
- **P**Transformations
- **P**Addressing
- **P**Synchronization

Impact of the World Wide Web

Primary Impact

First time that a large number of individuals and organizations have used non-proprietary, vendor-neutral encoding and communications standards to implement a truly heterogeneous computing environment.

Additional Impacts

P Encoding standardsP Software designP Focus for consolidation

Encoding Standards

PHTML hides a multitude of sins

PA application of SGML

- < Conformance issues
- < Volatility
- < Theology
- PEasy to get into
- P Danger in thinking that more than a delivery encoding

Encoding Standards

P Simplicity limits utility and drives divergent publishing models

- < Complex graphics
- < Structured data at the server

PCompeting/complementary efforts

- < Stupid HTML export
- < Proprietary encodings
- < Increased visual sophistication
- < Structural flexibility

PXML Initiative

Software Design

P Viewer-centric

- < Customized views
- < "Do everything" browsers
- PSmaller apps (e.g., plug-ins, java applets)
- P Platform independence
- PAuthoring metaphors

Focus for Consolidation

P Aim for the accident

P Change changes change

- < Perceptions of value
- < User needs
- < Vendor desires

Conclusion

- PUse encodings as primary integration mechanism
- P Choose tools that let you control metadata structures and object granularity
- PLayer new relationships and meanings as identified
- P Engage stakeholders in all phases of document lifecycle to identify metadata requirements