Natural Ontologies: Understanding and Addressing Alignment Issues

Kurt Conrad

The 9th International Protégé Conference July 23rd 2006, Stanford Campus, Palo Alto, California

Introduction

- What is the Ontology Management Team?
- Issue: Semantics are Naturally Dynamic.
- Approach: Analyze Transformational Origins of Semantic Changes
- Strategy: Formalize MetaKnowledge
- Approach: Analyze Impact of Human Values on Semantic Association
- Method: Semantic Consensus Acceleration

The Ontology Management Team

- OMT is a spin-off of the Ontolog Forum
- Particpants

Kurt Conrad <u>Conrad@SagebrushGroup.com</u>

(408) 247-0454

Bob Smith <u>Bob@1TallTrees.com</u>

(714) 536-1084

Bo Newman@KM-Forum.org

(540) 459-9592

Joe Beck Joe.Beck@EKU.edu

(859) 622-6359

OMT Mission and Focus

- Clearly differentiate Ontology Management and Engineering activities.
 - Understand factors driving effective management of ontology engineering projects.
- Bridge theoretical, problem, and engineering domains
 - Produce improved methodologies for ontology development.
 - Develop reliable methods for driving (natural) ontological alignment within working groups.
 - Identify and develop methods to ensure quality and alignment of needed conceptual models.
- Leverage new insights and methodologies to deal with more general issues of policy development within large enterprises.

OMT Policy Vector #1

- Issue: Implicit policymaking by technologists.
 - Management's abdication of policymaking responsibilities.
 - Occurs when the policy implications of design decisions are poorly understood.
 - Risk increases when dealing with emerging technologies.
- Strategy: Make policy decisions transparent.
 - Identify critical decisions that have significant downstream policy impacts.
 - Develop analytical and governmental processes to enable understanding and resolution of associated policy issues by the appropriate stakeholders.

OMT Policy Vector #2

- Issue: Disruptive impact of incomplete consensus and Dynamic Semantics on ontology engineering efforts.
- Strategy: Expand ontology development methodologies to deal effectively with Dynamic Semantics.
 - Understand the role of natural ontologies in sensemaking.
 - Develop methods to assess semantic distance, volatility, and drift.
 - Develop procedures for negotiating and "narrowing-the-gap" when semantic conflicts are encountered.
 - Develop a "language" for defining semantic policy that is usable by both policy makers and ontological engineers.

OMT Policy Vector #3

- Issue: Other areas of organizational behavior are increasingly experiencing the alignment issues typically associated with ontological engineering initiatives.
- Strategy: Generalize ontology management practices to:
 - Deal with broader issues of organizational meaning.
 - Resolve semantic issues in other policymaking domains.
 - Balance and prioritize semantic alignment efforts across initiatives.
 - Establish benchmarks for semantic accountability.

Issue: Semantics are Naturally Dynamic

Semantics are Naturally Dynamic

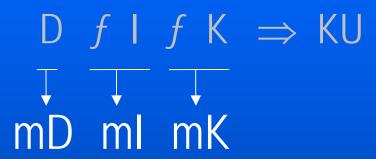
- Initial uncertainties and inevitable semantic changes undermine the alignment of formalization efforts.
- Dynamic Semantics (DS) results from the interplay of three agent types and their associated ontologies
 - Individual Agents
 - Social Agents
 - Automated Agents

Formalization Doesn't Stabilize Semantics

- Meaning isn't an inherent property
 - Ultimately the product of human imagination and creativity
- Complex set of mechanisms both drive and limit changes to perceived meaning
- DS ultimately impact automated systems
 - From individuals (changes to conceptualization)
 - From groups (dynamic / evolving consensus)
- Making semantics explicit doesn't necessarily limit or slow upstream change

Approach: Analyze Transformational Origins of Semantic Changes

Analyzing Dynamic Semantics


- While analysis of agents and agent types can be used to identify DS, it doesn't provide enough detail to drive specific responses
- Need more sophisticated models that let us look beyond agent types to specific Semantic Classes and properties
 - Knowledge Vector Model
 - MetaKnowledge Continuum Model

Knowledge Vector Model

$D f I f K \Rightarrow KU$

- Describes a continuum of Knowledge Artifacts
 - Data (D) is transformed (f) into Information
 - Information (I) is transformed into Knowledge
 - Knowledge (K) represents the point of actionable synthesis of all event-specific (K_E) and prior (K_P) knowledge
 - K enables a Knowledge Utilization Event (KU)
 - KU is either an action or a decision
- Boundaries are not necessarily discrete

MetaKnowledge Continuum Model

- Also describes a continuum without discrete boundaries
- MetaKnowledge (MK) comprises a range of KAs
 - Like the generic term MetaData
 - The term MetaKnowledge is used deliberately
- mD, mI, and mK (specific to this model) document
 - Critical semantic properties of each class of KA
 - Knowledge about the transformations that produced them

Interpretive Semantics

- Deal with the interpretation and meaning of symbols
- Knowledge about how symbols map to concepts
 - Potentially ambiguous (multiple meanings, double entendres)
 - Result of observational and symbol selection behaviors
- Answers the question: What is it?
- Maps to mD in the MK Continuum Model

Contextual Semantics

- Deal with context and pattern recognition
- Knowledge about how KAs (or parts) relate to
 - Transformation and representation behaviors
 - Other KAs
 - The real world
- Answers the questions
 - What kind? What is it about?
 - Who, where, when?
 - How, especially "How does this fit?"
- Maps to ml in the MK Continuum Model

Contextual Semantics Principles

- Appears to be the "first place" that values play a significant role in sense-making
- Meaning often expressed in historical terms that imply future semantics
 - "You always.."
 - "They always..."
 - "It always..."
- Contextual Semantics often implied, incomplete, or missing
 - Supplied by the interpreting agent

Aspirational Semantics

- Deals with underlying motivations, drivers, rationality
- Knowledge about how KAs are synthesized and optimized to enable behavior
- Answers the question "Why?"
 - Infrequently documented
 - Often tacit and implicit
- Individuals provide, when missing
 - Routine source of semantic breakdowns
- Maps to mK in the MK Continuum Model

Behavioral Semantics

- Meaning, as described in behavioral terms
- Often involves complex semantic chains (scenarios) which comprise
 - Events
 - Conditions
 - Other behaviors
- Representations range from tacit to explicit
 - Culture
 - Law

Strategy: Formalize MetaKnowledge

Addressing Dynamic Semantics

Ignore semantic volatility

- Leave critical semantic properties largely implicit and tacit
- Appropriate for non-critical issues

Stomp

- Make semantic properties more explicit
- Formalize without addressing sources of volatility
- Good when you can get away with it

Embrace

- Understand change vectors
- Balance explicit, implicit, and tacit representations
- Implement mechanisms to identify and/or leverage "natural" misalignments as they emerge

Semantic Nirvana / Artificial Utopia

- Formalization is optimized for computerized inference
 - First Order Logic typically considered the most expressive representation
- Two-step semantic resolution model
 - Symbol interpretation Maps symbol to concept
 - Axiomatic component Used to document, communicate, and potentially infer behavioral implications
- Limitations
 - Limited Contextual and Aspirational Semantics
 - Practical issues limit "expressiveness"
 - » Availability of subject matter experts
 - » Truth is unbounded but resources are limited
 - » Can you read KIF?

Dynamic Semantic Findings

- Formalizing meaning in the face of uncertainty is
 - Difficult, at best
 - Potentially chaotic
- Therefore, an improved ability to identify and understand Dynamic Semantics enables
 - More resiliency to be built in, in the first place
 - Less remediation. Fewer false starts
 - Changes to be more easily anticipated and reacted to
 - Semantic change to be used as a resource for enhancing delivered value

MetaKnowledge Formalization Strategy

- Identify areas of potential semantic conflict
 - Resolve conflict, as appropriate
 - Integrate semantic models, where each has value
- Avoid sub-optimization around machine-processable semantics
 - Evaluate each Semantic Class for potential value
 - Consciously balance or optimize the explicit representations
 - Document implicit and tacit MK triggers that are only usable by individuals and groups
- Where practical, expand the range of targeted KUs and associated behavioral semantics

MetaKnowledge Formalization Benefits

- Doesn't have to be difficult or expensive
- Supports and enables rapid prototyping
 - Scalable from small projects to large knowledge architectures
 - Reporting model starts "right" and improves through time
- Leverages implicit and tacit knowledge within the organization
 - Enables re-contextualization and Knowledge Perpetuation
 - Less brittle than other approaches
- Doesn't preclude use of logic-based formalizations
 - Can speed and document emergent consensus
 - Helps ensure alignment of human behavior with axioms
- Expected to be the foundation for many emerging Ontology
 Management practices

Approach: Analyze Impact of Human Values on Semantic Association

Decisionmaking is Expensive

- Relies on a series of complex and sophisticated activities:
 - Data collection and interpretation.
 - Organization and pattern recognition.
 - Identification of motivations, causalities, and implications.
 - Synthesize actionable knowledge.
- Evolutionary advantages to be gained by reducing cost (time and effort) of decisionmaking.
 - e.g., OODA Loops.

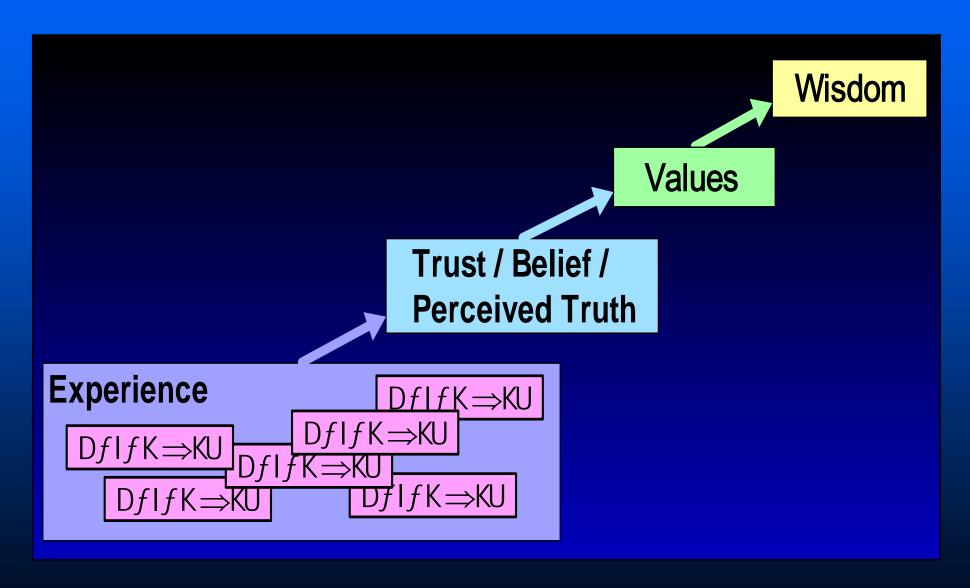
Values Cut Decisionmaking Costs...

- Usually abstracted (decontextualized) in order to be applied across a variety of behavioral contexts.
- Often comprise significant implicit and tacit knowledge components.
 - Including "truly" tacit knowledge that defies articulation.
- Represents a form of bounded rationality.
 - Doesn't just impact the amount of knowledge used in decisionmaking (sufficiency).
 - Impacts pattern recognition and other transformative behaviors.
- Enables much of the decisionmaking process to remain implicit and tacit, operating at a subconscious level.
- Values act as a "technology".

...But at the Risk of Poor Decisions

- Values can drive sub-optimal decisions.
 - Limit perception of contrary and mitigating evidence.
 - Reinforce understood and accepted interpretations.
 - Constrain associated semantics to those consistent with established behavioral patterns.
- Risk increases with changes across or within specific behavioral contexts.
- Risk increases when the impact of values on decisionmaking goes unrecognized.

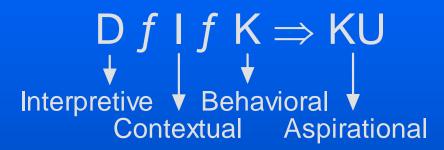
Potential Organizational Issues


- When unaccounted for, implicit and tacit values in systems can drive:
 - Semantic breakdowns.
 - Polarization and conflict.
 - Group think.
 - » Perpetuation of hidden biases.
 - » Missed opportunities.
 - » Inability to perceive risks.

Knowledge Vector Model

$$DfIfK \Rightarrow KU$$

- Provides basis for understanding the origin of values and the impact of values on semantic association.
- Agents use knowledge to execute behaviors.
 - Automated agents require all elements of the Knowledge Vector Model (KA, f, & KU) to be explicit.
 - Individuals and organizations can leverage implicit and tacit knowledge elements to "skip steps".
- People have a strong incentive to skip steps to make things easier.
- The scientific method does not come naturally.


Impact of Knowledge on Values

Values

- Values (including Principles, Interests, and Expectations) are KAs that represent networks of prior knowledge.
- Most importantly, values are routinely disassociated with major portions of the originating knowledge network.
- Disassociation is a form of knowledge compression.
 - Reduces processing time, communications time, recall time.
 - Allows values to be used as abstract KAs that can be applied in a variety of behavioral contexts.
- Wisdom relates to judgment and the ability to work intelligently with multiple sets of values.
 - Conflict avoidance, conflict resolution.
 - Balance short-term and long-term perspectives.
 - Avoid unary values-based, sub-optimal decisionmaking.

Semantic Segmentation Model

- Sensemaking is a multi-step process.
- Knowledge Vector elements are associated with a distinct classes of semantic properties.
 - Interpretive semantics.
 - Contextual semantics.
 - Aspirational semantics.
 - Behavioral semantics.
- Values directly impact the association of increasingly sophisticated meanings throughout the Knowledge Vector.

Values Impact Semantic Associations

- Perception.
 - What KA are considered irrelevant, noisy?
 - What KA are considered important, valuable, potentially useful?

- Interpretation.
 - What concepts are associated with inputs / symbols?
 - What referents are associated with the concepts?
 - How is ambiguity to be resolved?

Values Impact Semantic Associations

- Contextualization.
 - Which context / sensemaking structure is most appropriate?
 - How does this KA fit? How should it be positioned?
 - What rules should be used to organize and relate KAs?
 - What patterns emerge? Are they useful or distractions?
 - What can be inferred? What implicit K is relevant / important?
 - Are the sources credible? Has this K proved its value in the past?
 - Is the K applicable at this time, in this situation?
 - Is this consistent with history and trends?

Values Impact Semantic Associations

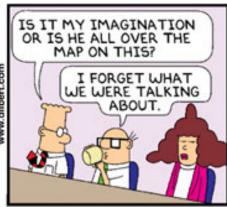
Aspirations.

- How do the KAs relate to goals and objectives?
- What are the motivations, intentions, and strategies of the relevant agents?
- Do the agents support my interests or are they in conflict?
- How does potential conflict influence K acquired from those sources?
- Is the K actionable, or do critical K gaps exist?

Behaviors.

- What casual models apply?
- What behaviors / results can be expected?
- What are the risks and probabilities?
- What alternatives and contingencies exist?

Ambiguous Semantics of Values



@ Scott Adams, Inc./Dist. by UFS, Inc.

Conclusions

- Values, not facts, drive decisions.
- Values may represent the ultimate semantic technology.
- Values-based analysis methods:
 - Facilitate better ontological alignment across individuals and organizations.
 - Improve the quality of policymaking.
 - Stabilize organizational context, requirements, and specifications for engineering efforts.
 - Improve the quality of semantic formalization and articulation.

On the Horizon

- Values-based ontology development process.
- Introduction of values-based logic to complement existing axiomatic models of semantic formalization.
- Extend values-based conceptual alignment methods to address a broad range of policy development and governance issues.

Method: Semantic Consensus Acceleration (SCA)

SCA Origins

- Methodology developed to address a range of issues and initiatives.
 - Metadata framework to improve semantic interoperability.
 - Web search, retrieval, and navigation.

Cross-cultural teams

- Comprised marketing, engineering, technical documentation personnel.
- Leveraged multiple value systems to illuminate semantic conflicts.
- Given a Semantic Workpackage, comprising a set of related terms.
- Identified and differentiated individual concepts and key relationships (including organizational scope).
- Documented the level of consensus and any outstanding knowledge gaps.
- Delivered conceptual "requirements" and "specifications" to engineering team.

SCA Process

- Step 1: Research Terms
 - List any additional terms and sources
- Step 2: Inventory Semantics
 - List concepts and draft / identify working definitions
 - Identify "core concept" and document supporting rationale
 - Map related concepts & relationships to core, document behavioral relevance
- Step 3: Normalize Semantics
 - Refine & validate working definitions to produce candidate definitions
 - Document supporting rationales
- Step 4: Normalize Terminology
 - Select normative term for each concept
 - Document term's origins and history
 - Document any alternative semantics
 - List proper and improper aliases